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Table 11. Firs t -Order  a n d  Three-Halves-Order R a t e  
Cons tan ts  f o r  the Hydrobora t ion  of Representat ive 

Olefins wi th  (9-BBN),  in  Carbon Tetrachlor ide at 25 C 

s - l  mol-l/2 - 1  
104k, ,  104k3, , ,  L1/2 

olefina S - 
1-hexene  1 . 5 4  
2-methyl-1-pentene 1.53 
3 ,3-d imethyl - l -butene  1 . 4 5  
cyc lopentene  1 . 5 2  
cyc lohexeneb  0 . 3 2 3  
1-methylcyc lohexene  0.051 
2,3-dimethyl-2-butene 0 . 0 2 0  

a R a t e  cons tan ts  in table  are f o r  initial concentrat ions o f  
olefin ( 0 . 4 0 0  M )  a n d  (9-BBN), (0.200 M). Variat ion o f  
t h e  initial concent ra t ion  of  the olef in  a n d  (9-BBN),  d id  not 
change t h e  observed ra te  cons tan ts  significantly: cyclo-  
pentene  ( 0 . 4 0 0  M), (9-BBN),  (0.100 M), lo4/?, 1 . 5 8 ;  
cyc lopentene  ( 0 . 2 0 0  M), (9-BBN),  (0.100 M), 1 0 4 k 1  1 . 5 8 ;  
cyclohexene (0 .400  M), (g-BBN),  (0.100 M), 1 0 4 k 3 , ,  
0 .324;  cyc lohexene  ( 0 . 2 0 0  M), (9-BBN),  (0.100 M), 
104k3, ,  0 . 3 4 5 .  
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is found. On the other hand, kz is involved in the measured 
values of k3/2 = 1/z(kl/k-1)1’2kz, so that the ratio of the two 
k3/2 values gives the ratio of the k 2  values and agrees with 
the values determined competitively. 

The question necessarily arises as to why these kinetics 
are so different from those previously observed with di- 
siamylborane. We are unable to account for these dif- 
ferences. The previous study with disiamylborane involved 
a much more labile material. Moreover, the dimeric 
product contains some five different  diastereoisomer^.'^ 
Fortunately, these difficulties are avoided with 9-BBN. It 
is clear that conclusions based on the earlier study with 
disiamylborane must now be reconsidered.16 

lated three-halves-order rate constants do not change as 
the reaction proceeds. The rate constants observed, both 
for the first-order and three-halves-order kinetics, are 
summarized in Table 11. 

Fortunately, the kinetics appear to define the mecha- 
nism clearly. Thus the kinetics can be accounted for in 
terms of a dissociation of the dimer into monomer (eq 6), 
followed by a reaction of the monomer with the olefin (eq 
7). 

k 
(9-BBN)* --- A 2 9-BBN (6) 

k-1 

(7) 
k2 

9-BBN + olefin - B-alkyl-9-BBN 

This mechanism leads to the following kinetic expression 
(eq 8), utilizing the usual steady state approximation. 

. -  - d[(g-BBN),I 
d t  

- 

If ‘/2kz[olefin] >> k_l[9-BBN], eq 8 reduces to eq 4. Thus 
the reaction behaves like a unimolecular reaction and 
exhibits first-order kinetics. However, if ‘/,k2[olefin] << 
kl[9-BBN], eq 8 reduces to eq 5 .  Thus the reaction 
exhibits three-halves-order kinetics. For certain olefins, 
such as 2-methyl-2-butene and cis-3-hexene, ‘/2k2[olefin] 
= k-l[9-BBN], and the kinetics fail to follow the simplified 
rate expressions, eq 4 and 5. 

This mechanism is supported by a comparison of the 
relative rates of hydroboration by 9-BBN of certain of 
these olefins determined competitively with the relative 
rates calculated from the rate constants. Thus the relative 
rate, 2-methyl-l-pentene/cyclopentene, gives a competitive 
value in carbon tetrachloride of 27 (identical with the value 
in THF15), but very different from the ratio of the kl 
values, -1.00 (Table 11). On the other hand, for k3,2 
reactions, the two values agree closely, l-methylcyclo- 
hexene/cyclohexene 0.159 from the competition experi- 
ments and 0.158 from the k3,2 values. Since k1 measures 
the rate of dissociation of (9-BBN)z, there should be no 
relationship of the k, ratios to the value of kz, and none 

(15) Brown, H. C.; Liotta, R.; Scouten, C. G. J. Am. Chem. SOC. 1976, 
98, 5297-5301. 
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(16) Preliminary qualitative observations on the rate of reaction of 
pyridine and other tertiary amines with (9-BBN)* indicated that these 
reactions also proceed through a prior dissocation of the dimer into 
monomer. Brown, H. C.; Kulkami, S. U. Inorg. Chern. 1977,16,3090-3094. 
A more extensive, more quantitative study is now under way. 

(17) (a) Graduate research assistant on Grant GP-6942X of the National 
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On the Synthesis of Etioporphyrin by Monopyrrole 
Tetramerization 

Summary: Acid-catalyzed tetermerization of 4-ethyl-5- 
(hydroxymethyl)-3-methylpyrrole-2-carboxylic acid (1) is 
shown to produce a mixture of all four etioporphyrin 
primary “type-isomers”, rather than solely etioporphyrin-I 
(2). 

Sir: It was recently reported’ that acid-catalyzed tet- 
ramerization of 4-ethyl-5-(hydroxymethyl)-3-methyl- 
pyrrole-2-carboxylic acid (1) (bearing a 15N label a t  position 
1) affords an isomerically pure sample of etioporphyrin-I 
(2). This claim, based only on NMR analysis at 100 MHz, 

2 
M 

1 

suggested an extremely facile route to the pure “type- 
isomer” 2 which would have advantage over presently used 
procedures.2 However, we were surprised at the apparent 
homogeneity of the sample since: (1) such monopyrrole 
polymerizations normally3 give a mixture of all four pri- 
mary type-isomers; (2) a similar monopyrrole tetrameri- 
zation in the coproporphyrin series was originally claimed4 
to give pure type-111 isomer, but this was subsequently 
corrected5 in favor of random type-isomer formation; and 

(1) Momenteau, M.; Mispelter, J.; Loock, B.; Lhoste, J. M. Can. J.  Chern. 

(2) Smith, K. M. J .  Chem. SOC., Perkin Trans. 1 1972, 1471-1475. 
(3) Smith, K. M. in “Porphyrins and Metalloporphyrins”; Smith, K. 

1978, 56, 2598-2603. 

M.. Ed.: Elsevier. Amsterdam. 1975: D 32. 
i4) Bullock, E:; Johnson, A.’ W.; Markharn, E.; Shaw, K. B. J .  Chem. 

(5) Kay, I. T. Proc. Natl. Acad. Sci. U.S.A. 1962, 48, 901-905. 
SOC. 1958, 1430-1440. 
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Figure 1. 360-MHz NMR spectra (Nicolet NT-360) in CDC13 
of (Al) meso protons of etioporphyrin from acid-catalyzed 
tetramerization of 1; (A2) meso protons of pure etioporphyrin-I;2 
(Bl) nuclear methyls of etioporphyrin from acid-catalyzed tet- 
ramerization of 1; (B2) nuclear methyls of pure etioporphyrin-I 
(2). 

(3) the 60- or 100-MHz NMR spectra of the individual 
etioporphyrin type-isomers are somewhat similar.6 

We have repeated exactly the synthesis' of porphyrin 
from 1 as described [yield, 37% (1it.l yield, 35.3%)] in the 
I4N series. The 100-MHz NMR spectrum of the product 
gave an initial impression of pure type-isomer formation 
(i.e., singlet meso protons, quartet and triplet for the ethyl 
groups), except that the nuclear methyl groups were an 
unresolved doublet (assigned in the I5N series to a het- 
eronuclear coupling with the central nitrogens by the 
original authors,' though no similar coupling with the 
equidistant ethyl methylenes was observed). 

At  360 MHz the situation is very clear. Figure 1 shows 
the meso-proton resonances (A) of the etioporphyrin from 
1 and of pure etioporphyrin-I,2 as well as the nuclear 
methyls (B) from 1 and pure material. Clearly, the 
etioporphyrin from 1 is an isomeric mixture. 

The nature of the mixture was established by prepa- 
ration of the mercury(I1) "double-sandwich" complexes.6 
In Figure 2A the 360-MHz NMR spectra of the meso 
protons in the mercury complex from the monopyrrole 
tetramerization are shown. Above the spectrum are shown 
the corresponding spectra for the pure etioporphyrin-I 
mercury complex (B) and for the pure etioporphyrin-I1 
mercury complex (C).6 The tetramerization material, 

(6) Hudson, M. F.; Smith, K. M. Tetrahedron 1975, 31, 3077-3083. 
(7) A solution of 3.4 g of pyrrole 1 and 680 mg of potassium ferricyanide 

in 14 mL of acetic acid was heated under reflux for 1 h with vigorous stirring. 
The mixture was then allowed to stand at room temperature for 3 days 
before collection of the precipitate, washing with methanol, and drying. 
This crude material was chromatographed on Woelm neutral alumina 
(Brockmann Grade l), eluting with chloroform; the product (823 mg) was 
crystallized from CHC1,-methanol. 
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Figure 2. 360-MHz NMR spectra (Nicolet NT-360) in CDC1, 
of the meso protons in mercury(I1) "double-sandwich" complexes 
from: (A) etioporphyrin from acid-catalyzed tetramerization of 
1; (B) pure etioporphyrin-I;2,6 (C) pure etioporphyrin-II.6 The 
arabic numerals (1-4) above peaks in A refer to the resonances 
from mercury(I1) complexes of etioporphyrins-I through -IV, 
respectively. The etioporphyrin-I1 complex in C is contaminated 
with a little of type-111: Shoulders on peaks are due to lseHgg1H 
couplings. 

Figure 2A, is an obvious mixture,8 and the same spectra 
a t  100 MHz were equally convincing. 

We therefore reiterate that acid-catalyzed monopyrrole 
tetramerizations yield all four primary type-isomers. 
Regularly substituted isomers (e.g., type-I) must be pre- 
pared, a t  the present state of synthetic expertise, from 
dipyrroles.2 
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( 8 )  A uery rough integration of the spectrum in Figure 2A indicates 
the composition of the mixture to be approximately: 15% type-I (2); 25% 
type-11; 50% type-111; 10% type-IV. 


